SAR Image De-Noising based on GNL-Means with Optimized Pixel-Wise Weighting in Non-Subsample Shearlet Domain
نویسندگان
چکیده
SAR images have been widely used in many fields such as military and remote sensing. So the suppression of the speckle has been an important research issues. To improve the visual effect of non-local means, generalized non-local (GNL) means with optimized pixel-wise weighting is applied to shrink the coefficients of non-subsample Shearlet transform (NSST) of SAR image. The new method can optimize the weight of GNL, which not only improve the PSNR of de-noised image, but also can significantly enhance the visual effect of de-noising image.
منابع مشابه
SAR Image De-Noising Based on Shift Invariant K-SVD and Guided Filter
Finding a way to effectively suppress speckle in SAR images has great significance. K-means singular value decomposition (K-SVD) has shown great potential in SAR image de-noising. However, the traditional K-SVD is sensitive to the position and phase of the characteristics in the image, and the de-noised image by K-SVD has lost some detailed information of the original image. In this paper, we p...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملNon-Local Image De-noising and Post Processing Using KL Transform
Basically there are two types of image de-noising methods such as Local means algorithms and Non-Local means algorithms. In first case, to restore the intensity of particular pixel only the local neighborhood of pixel being processed is used whereas in second case the entire image is taken into account to restore the intensity of particular pixel. Former case makes assumption about the frequenc...
متن کاملNSCT Domain Underwater Image De-noising Algorithm Based on Non-local Means with Modified Parameter
In order to preserve the integrity of edge and detail information in the underwater image, a NSCT de-noising method based on Non-local means with modified parameter is proposed. Since NSCT has the feature of translation invariance, it is used to decompose the underwater image in multi-scale and multi-direction. For the noise and detail information are normally distributed in the high frequency ...
متن کاملSuper-resolution Reconstruction of SAR Image based on Non-Local Means Denoising Combined with BP Neural Network
In this article, we propose a super-resolution method to resolve the problem of image low spatial because of the limitation of imaging devices. We make use of the strong nonlinearity mapped ability of the back-propagation neural networks(BPNN). Training sample images are got by undersampled method. The elements chose as the inputs of the BPNN are pixels referred to Non-local means(NL-Means). Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer and Information Science
دوره 10 شماره
صفحات -
تاریخ انتشار 2017